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Abstract—One of the fundamental goals of artificial intelli-
gence is to understand and develop intelligent agents that simu-
late human-level intelligence. This fundamental goal complements
another essential goal in education, improving understanding of
how humans acquire knowledge and how students may vary
in their abilities to learn. Contributing to both goals, a lot of
efforts have been made to develop intelligent agents that simulate
human learning of math and science. However, constructing such
a learning agent currently requires manual encoding of prior
domain knowledge, which is both inefficient and less cognitively
plausible. Previous cognitive science research has shown that
one of the key factors that differentiates experts and novices
is their different representations of knowledge. Moreover, for
many existing learning algorithms, ‘“better” representations often
lead to more effective learning. We [1] recently proposed an
efficient algorithm that acquires representation knowledge in
the form of ‘“deep features”. In this paper, we integrate this
algorithm into a simulated student, SimStudent, which learns
procedural knowledge from example solutions and problem
solving experience. We show that with the integration, prior
knowledge engineering effort is reduced, learning performance
is as good or better, and SimStudent becomes a more plausible
simulation of human learning.

I. INTRODUCTION

One of the fundamental goals of artificial intelligence is to
understand and develop intelligent agents that simulate human-
like intelligence. A large amount of effort (e.g., [2], [3]) has
been put toward this challenging task. Further, education in
the 21! century will be increasingly about helping students
not just to learn content but also to become better learners.
Thus, we have a second goal of improving our understanding
of how humans acquire knowledge and how students vary in
their abilities to learn.

To contribute to both goals, considerable efforts (e.g., [4])
have been made to develop intelligent agents that model hu-
man learning of math, science, or a second language. Although
such agents produce intelligent behavior with less human
knowledge engineering than before, there remains a non-trivial
element of knowledge engineering in the encoding of the
prior domain knowledge (e.g., programming how to extract
a coefficient from a term). This requirement increases the
difficulty of constructing an intelligent agent. It also reduces
the cognitive plausibility of the constructed agent, as human
students entering a course do not necessarily have substan-
tial domain-specific or domain-relevant prior knowledge. An
intelligent agent that requires only domain-independent prior
knowledge as given would be a great improvement.

Previous work in cognitive science (e.g., [5]) showed that
one of the key factors that differentiates experts and novices is
their different prior knowledge of world state representation.
Experts view the world in terms of deep functional features
(e.g., coefficient and constant in algebra), while novices only
view it in terms of shallow perceptual features (e.g., integer
in an expression). Recent work on perceptual expertise [6]
and on vision in robotics (e.g., [7]) has shown the importance
of perceptual representation learning across domains. We have
recently developed a learning algorithm that acquires deep fea-
tures automatically with only domain-independent knowledge
as input [1]. In this paper, we integrate this representation
learner into a machine-learning agent, SimStudent [4], and
evaluate the proposed approach in three domains: fraction
addition, equation solving, and stoichiometry [8].

II. A BRIEF REVIEW OF SIMSTUDENT

SimStudent is an intelligent agent that inductively learns
skills to solve problems from demonstrated solutions and from
problem solving experience. It is an extension of programming
by demonstration [9] using inductive logic programming [10]
as an underlying learning technique.

This skill knowledge is represented as production rules. The
left side of Figure 1 shows an example of a learned production
rule in its readable format'. The perceptual information part
is acquired by the “where” learner. The precondition part is
learned by the “when” learner. The operator function sequence
part is created by the “how” learner. The rule to “divide both
sides of -3x=6 by -3 shown at the left side of Figure 1 would
be read as “given a left-hand side (i.e., -3x) and a right-hand
side (6) of the equation, when the left-hand side does not have
a constant term, then get the coefficient of the term at the left-
hand side and divide both sides by the coefficient.”

Note that operator functions are divided into two groups,
domain-independent operator functions and domain-specific
operator functions. Domain-independent operator functions are
basic skills used across multiple domains. Hence, we assume
that real students usually have knowledge of these simple skills
prior to class. Domain-specific operator functions, on the other
hand, are more complicated skills. Performing such operator
functions usually require domain expert knowledge, which real
students may not have.

! Actual production rules follow the LISP format.



Extended:

Skill divide (e.g. -3x = 6)
Perceptual information:
Left side (-3, -3x)
Right_s#de (6)

Original:
Skill divide (e.g. -3x = 6)
Perceptual information:
Left side (-3x)
Right side (6)
Precondition:
Left side (-3x) does not
have constant term
Operator sequence:
Get coefficient (-3) of left
side (-3x)
Divide both sides with the
coefficient (-3)

-3 is the left child of the

left side (-3x)

-3 is a signed number
Operator sequence:

- i (-3) of lef

side{-3x)

Divide both sides with the

coefficient (-3)

Fig. 1.
format.

Original and extended production rules for divide in a readable

III. INTEGRATING REPRESENTATION LEARNING INTO
SIMSTUDENT

Having reviewed SimStudent, we move to a discussion of
representation knowledge acquisition as deep feature learning.
As mentioned above, representation learning is important both
for human knowledge acquisition, and in achieving effective
machine learning. Missing deep feature knowledge sometimes
causes real students to make errors in learning. We [1] exam-
ined the nature of deep feature learning in algebra equation
solving, and discovered that it could be modeled as a grammar
induction problem given observational data (e.g. equations in
algebra). Expressions can be formulated as a context free
grammar. The deep feature ‘“coefficient” is a non-terminal
symbol in one of the grammar rules. The perspective of
viewing representation learning tasks as grammar induction
problems also explains the cause of student errors.

Given the promising results, we believe the representation
learner is effective in acquiring representation knowledge, and
is a good model of real students. To better evaluate how
the representation learner could affect the performance of an
intelligent agent, we present how to integrate representation
learning into SimStudent. As we have mentioned above, Sim-
Student is able to acquire production rules in solving compli-
cated problems, but requires a set of domain-specific operator
functions given as prior knowledge. In order to both reduce the
amount of prior knowledge engineering needed for SimStudent
and to build a better model of real students, we present a
novel approach that integrates the representation learner into
SimStudent. Figure 1 shows a comparison between production
rules acquired by the original and the extended SimStudents.
As we can see, the coefficient of the left-hand side (i.e., -3)
is included in the perceptual information part in the extended
production rule. Therefore, the operator function sequence no
longer needs the domain-specific operator, (coefficient -3x).

IV. EXPERIMENTAL STUDY

In order to evaluate whether the extended SimStudent is able
to acquire correct knowledge with reduced prior knowledge
engineering, we carried out an experiment in three domains:
fraction addition, equation solving, and stoichiometry. Al-
though not shown here, we have also demonstrated that the

extended SimStudent can be used to discover models of human
students that are better than those found by experts [11].

For each domain, the representation learner was first trained
on a sequence of feature learning tasks. Then, SimStudent was
tutored by an automatic tutor, which simulates the automatic
tutor used by human students in some classroom study. All of
the problems were also extracted from the same study.

We evaluated the effectiveness of SimStudent with two
measurements: the amount of knowledge engineering needed,
and the speed of learning. Experimental results show that,
in all three domains, the original SimStudent given domain-
specific operator functions required more than twice as much
coding compared to the extended SimStudent given only
domain-general operator functions. In addition, after trained
on all problems, comparing with the original SimStudent with
domain-specific operator functions , the extended SimStudent
performed slightly better in equation solving, and significantly
better in fraction addition and stoichiometry (p < 0.0001).

V. CONCLUDING REMARKS

Building an intelligent agent that simulates human-level
learning is an essential task in Al and education, but building
such systems often requires manual encoding of prior domain
knowledge. We proposed a novel approach that integrates a
representation learning algorithm into an intelligent agent,
SimStudent, as an extension of the perception module. After
the integration, the extended SimStudent is able to achieve
better or at least comparable performance without requiring
any domain-specific operator function as input.
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